Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.886
Filtrar
1.
BMC Vet Res ; 20(1): 127, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561720

RESUMO

BACKGROUND: Pseudomonas putida is a pathogenic bacterium that induces great losses in fishes, including Nile tilapia (Oreochromis niloticus). Currently, the application of nanomaterials in aquaculture practices has gained more success as it endows promising results in therapies compared to traditional protocols. OBJECTIVE: Therefore, the current perspective is considered the first report to assess the anti-bacterial efficacy of titanium dioxide nanogel (TDNG) against Pseudomonas putida (P. putida) in Nile tilapia. METHODS: The fish (n = 200; average body weight: 47.50±1.32 g) were allocated into four random groups (control, TDNG, P. putida, and TDNG + P. putida), where 0.9 mg/L of TDNG was applied as bath treatment for ten days. RESULTS: Outcomes revealed that P. putida infection caused ethological alterations (surfacing, abnormal movement, and aggression) and depression of immune-antioxidant variables (complement 3, lysozyme activity, total antioxidant capacity, superoxide dismutase, and reduced glutathione content). Additionally, a substantial elevation in hepatorenal biomarkers (aspartate and alanine aminotransferases and creatinine) with clear histopathological changes and immuno-histochemical alterations (very weak BCL-2 and potent caspase-3 immuno-expressions) were seen. Surprisingly, treating P. putida-infected fish with TDNG improved these variables and obvious restoration of the tissue architectures. CONCLUSION: Overall, this report encompasses the key role of TDNG as an anti-bacterial agent for controlling P. putida infection and improving the health status of Nile tilapia.


Assuntos
Ciclídeos , Doenças dos Peixes , Polietilenoglicóis , Polietilenoimina , Pseudomonas putida , Titânio , Animais , Antioxidantes , Nanogéis , Dieta , Suplementos Nutricionais , Ração Animal/análise , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia
2.
Molecules ; 29(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611834

RESUMO

Alongside fermentable sugars, weak acids, and furan derivatives, lignocellulosic hydrolysates contain non-negligible amounts of lignin-derived aromatic compounds. The biological funnel of lignin offers a new strategy for the "natural" production of protocatechuic acid (PCA). Herein, Pseudomonas putida KT2440 was engineered to produce PCA from lignin-derived monomers in hydrolysates by knocking out protocatechuate 3,4-dioxygenase and overexpressing vanillate-O-demethylase endogenously, while acetic acid was used for cell growth. The sugar catabolism was further blocked to prevent the loss of fermentable sugar. Using the engineered strain, a total of 253.88 mg/L of PCA was obtained with a yield of 70.85% from corncob hydrolysate 1. The highest titer of 433.72 mg/L of PCA was achieved using corncob hydrolysate 2 without any additional nutrients. This study highlights the potential ability of engineered strains to address the challenges of PCA production from lignocellulosic hydrolysate, providing novel insights into the utilization of hydrolysates.


Assuntos
Hidroxibenzoatos , Lignina , Pseudomonas putida , Pseudomonas putida/genética , Ácido Acético , Açúcares
3.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599633

RESUMO

AIMS: This study explores the biocontrol potential of Pseudomonas putida Z13 against Botrytis cinerea in tomato plants, addressing challenges posed by the pathogen's fungicide resistance. The aims of the study were to investigate the in vitro and in silico biocontrol traits of Z13, identify its plant-colonizing efficacy, evaluate the efficacy of different application strategies against B. cinerea in planta, and assess the capacity of Z13 to trigger induced systemic resistance (ISR) in plants. METHODS AND RESULTS: The in vitro experiments revealed that Z13 inhibits the growth of B. cinerea, produces siderophores, and exhibits swimming and swarming activity. Additionally, the Z13 genome harbors genes that encode compounds triggering ISR, such as pyoverdine and pyrroloquinoline quinone. The in planta experiments demonstrated Z13's efficacy in effectively colonizing the rhizosphere and leaves of tomato plants. Therefore, three application strategies of Z13 were evaluated against B. cinerea: root drenching, foliar spray, and the combination of root drenching and foliar spray. It was demonstrated that the most effective treatment of Z13 against B. cinerea was the combination of root drenching and foliar spray. Transcriptomic analysis showed that Z13 upregulates the expression of the plant defense-related genes PR1 and PIN2 upon B. cinerea inoculation. CONCLUSION: The results of the study demonstrated that Z13 possesses significant biocontrol traits, such as the production of siderophores, resulting in significant plant protection against B. cinerea when applied as a single treatment to the rhizosphere or in combination with leaf spraying. Additionally, it was shown that Z13 root colonization primes plant defenses against the pathogen.


Assuntos
Botrytis , Doenças das Plantas , Pseudomonas putida , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Pseudomonas putida/fisiologia , Pseudomonas putida/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Sideróforos/metabolismo , Raízes de Plantas/microbiologia , Rizosfera , Agentes de Controle Biológico/farmacologia , Folhas de Planta/microbiologia , Resistência à Doença
4.
Curr Microbiol ; 81(6): 157, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658394

RESUMO

This manuscript reports the whole genome sequence of a conditionally pathogenic rhizobacterial strain, Pseudomonas putida AKMP7, which has been previously reported by us to be beneficial to Arabidopsis thaliana under well-watered conditions and pathogenic to the plant under water stress. As part of a study to understand this unique behavior, the whole genome sequence of this strain was analyzed. Based on the results, it was identified that the total length of the AKMP7 genome is 5,764,016 base pairs, and the total GC content of the genome is 62.93% (typical of P. putida). Using RAST annotation pipeline, it was identified that the genome has 5605 coding sequences, 80 repeat regions, 71 tRNA genes, and 22 rRNA genes. A total of 4487 functional proteins and 1118 hypothetical proteins were identified. Phylogenetic analysis has classified it as P. putida species, with a P value of 0.03. In order to identify close relatives of this strain, comparative genomics was performed with 30 other P. putida strains, taken from publicly available genome databases, using Average Nucleotide Identity (ANI) analysis. Whole genome comparison with these strains reveals that AKMP7 possesses Type-IV Secretion System (T4SS) with conjugative transfer functionality. Interestingly, the T4SS feature is absent in all the beneficial/harmless strains of P. putida that we analyzed. All the plant pathogenic bacteria that were analyzed had the T4SS feature in their genome, indicating its role in pathogenesis. This study aims to address important gaps in understanding the molecular mechanisms involved in the conditional/opportunistic pathogenesis of plant-associated, beneficial soil bacteria, using genomics approaches.


Assuntos
Genoma Bacteriano , Filogenia , Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/classificação , Composição de Bases , Arabidopsis/microbiologia , Arabidopsis/genética , Proteínas de Bactérias/genética , Doenças das Plantas/microbiologia , Sequenciamento Completo do Genoma , Análise de Sequência de DNA
5.
Commun Biol ; 7(1): 452, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609451

RESUMO

In their natural habitats, microbes rarely exist in isolation; instead, they thrive in consortia, where various interactions occur. In this study, a defined synthetic co-culture of the cyanobacterium S. elongatus cscB, which supplies sucrose to the heterotrophic P. putida cscRABY, is investigated to identify potential interactions. Initial experiments reveal a remarkable growth-promoting effect of the heterotrophic partner on the cyanobacterium, resulting in an up to 80% increase in the growth rate and enhanced photosynthetic capacity. Vice versa, the presence of the cyanobacterium has a neutral effect on P. putida cscRABY, highlighting the resilience of pseudomonads against stress and their potential as co-culture partners. Next, a suitable reference process reinforcing the growth-promoting effect is established in a parallel photobioreactor system, which sets the basis for the analysis of the co-culture at the transcriptome, proteome, and metabolome levels. In addition to several moderate changes, including alterations in the metabolism and stress response in both microbes, this comprehensive multi-OMICs approach strongly hints towards the exchange of further molecules beyond the unidirectional feeding with sucrose. Taken together, these findings provide valuable insights into the complex dynamics between both co-culture partners, indicating multi-level interactions, which can be employed for further streamlining of the co-cultivation system.


Assuntos
Pseudomonas putida , Synechococcus , Técnicas de Cocultura , Multiômica , Sacarose
6.
Methods Enzymol ; 696: 199-229, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38658080

RESUMO

Fluorine (F) is an important element in the synthesis of molecules broadly used in medicine, agriculture, and materials. F addition to organic structures represents a unique strategy for tuning molecular properties, yet this atom is rarely found in Nature and approaches to produce fluorometabolites (such as fluorinated amino acids, key building blocks for synthesis) are relatively scarce. This chapter discusses the use of L-threonine aldolase enzymes (LTAs), a class of enzymes that catalyze reversible aldol addition to the α-carbon of glycine. The C-C bond formation ability of LTAs, together with their known substrate promiscuity, make them ideal for in vitro F biocatalysis. Here, we describe protocols to harness the activity of the low-specificity LTAs isolated from Escherichia coli and Pseudomonas putida on 2-fluoroacetaldehyde to efficiently synthesize 4-fluoro-L-threonine in vitro. This chapter also provides a comprehensive account of experimental protocols to implement these activities in vivo. These methods are illustrative and can be adapted to produce other fluorometabolites of interest.


Assuntos
Escherichia coli , Halogenação , Pseudomonas putida , Especificidade por Substrato , Escherichia coli/enzimologia , Escherichia coli/genética , Pseudomonas putida/enzimologia , Biocatálise , Aminoácidos/química , Glicina Hidroximetiltransferase/metabolismo , Glicina Hidroximetiltransferase/química , Glicina Hidroximetiltransferase/genética , Treonina/química , Treonina/metabolismo , Treonina/análogos & derivados , Flúor/química , Aldeídos/química , Aldeídos/metabolismo
7.
J Agric Food Chem ; 72(12): 6500-6508, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38470347

RESUMO

Dipicolinic acid (DPA), a cyclic diacid, has garnered significant interest due to its potential applications in antimicrobial agents, antioxidants, chelating reagents, and polymer precursors. However, its natural bioproduction is limited since DPA is only accumulated in Bacillus and Clostridium species during sporulation. Thus, heterologous production by engineered strains is of paramount importance for developing a sustainable biological route for DPA production. Pseudomonas putida KT2440 has emerged as a promising host for the production of various chemicals thanks to its robustness, metabolic versatility, and genetic tractability. The dominant Entner-Doudoroff (ED) pathway for glucose metabolism in this strain offers an ideal route for DPA production due to the advantage of NADPH generation and the naturally balanced flux between glyceraldehyde-3-phosphate and pyruvate, which are both precursors for DPA synthesis. In this study, DPA production via the ED pathway was in silico designed in P. putida KT2440. The systematically engineered strain produced dipicolinate with a titer of 11.72 g/L from glucose in a 5 L fermentor. This approach not only provides a sustainable green route for DPA production but also expands our understanding of the metabolic potential of the ED pathway in P. putida KT2440.


Assuntos
Pseudomonas putida , Pseudomonas putida/genética , Metabolismo dos Carboidratos , Reatores Biológicos , Antioxidantes/metabolismo , Ácido Pirúvico/metabolismo , Engenharia Metabólica
8.
Microb Biotechnol ; 17(3): e14423, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38528784

RESUMO

Medium-chain-length α,ω-diols (mcl-diols) play an important role in polymer production, traditionally depending on energy-intensive chemical processes. Microbial cell factories offer an alternative, but conventional strains like Escherichia coli and Saccharomyces cerevisiae face challenges in mcl-diol production due to the toxicity of intermediates such as alcohols and acids. Metabolic engineering and synthetic biology enable the engineering of non-model strains for such purposes with P. putida emerging as a promising microbial platform. This study reviews the advancement in diol production using P. putida and proposes a four-module approach for the sustainable production of diols. Despite progress, challenges persist, and this study discusses current obstacles and future opportunities for leveraging P. putida as a microbial cell factory for mcl-diol production. Furthermore, this study highlights the potential of using P. putida as an efficient chassis for diol synthesis.


Assuntos
Poli-Hidroxialcanoatos , Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Engenharia Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Biologia Sintética
9.
Microb Biotechnol ; 17(3): e14448, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498302

RESUMO

Pseudomonas putida is a soil bacterium with multiple uses in fermentation and biotransformation processes. P. putida ATCC 12633 can biotransform benzaldehyde and other aldehydes into valuable α-hydroxyketones, such as (S)-2-hydroxypropiophenone. However, poor tolerance of this strain toward chaotropic aldehydes hampers efficient biotransformation processes. To circumvent this problem, we expressed the gene encoding the global regulator PprI from Deinococcus radiodurans, an inducer of pleiotropic proteins promoting DNA repair, in P. putida. Fine-tuned gene expression was achieved using an expression plasmid under the control of the LacIQ /Ptrc system, and the cross-protective role of PprI was assessed against multiple stress treatments. Moreover, the stress-tolerant P. putida strain was tested for 2-hydroxypropiophenone production using whole resting cells in the presence of relevant aldehyde substrates. P. putida cells harbouring the global transcriptional regulator exhibited high tolerance toward benzaldehyde, acetaldehyde, ethanol, butanol, NaCl, H2 O2 and thermal stress, thereby reflecting the multistress protection profile conferred by PprI. Additionally, the engineered cells converted aldehydes to 2-hydroxypropiophenone more efficiently than the parental P. putida strain. 2-Hydroxypropiophenone concentration reached 1.6 g L-1 upon a 3-h incubation under optimized conditions, at a cell concentration of 0.033 g wet cell weight mL-1 in the presence of 20 mM benzaldehyde and 600 mM acetaldehyde. Product yield and productivity were 0.74 g 2-HPP g-1 benzaldehyde and 0.089 g 2-HPP g cell dry weight-1 h-1 , respectively, 35% higher than the control experiments. Taken together, these results demonstrate that introducing PprI from D. radiodurans enhances chaotrope tolerance and 2-HPP production in P. putida ATCC 12633.


Assuntos
Deinococcus , Hidroxipropiofenona , Pseudomonas putida , Benzaldeídos/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Deinococcus/genética , Acetaldeído/metabolismo
10.
Nat Commun ; 15(1): 2666, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531855

RESUMO

To broaden the substrate scope of microbial cell factories towards renewable substrates, rational genetic interventions are often combined with adaptive laboratory evolution (ALE). However, comprehensive studies enabling a holistic understanding of adaptation processes primed by rational metabolic engineering remain scarce. The industrial workhorse Pseudomonas putida was engineered to utilize the non-native sugar D-xylose, but its assimilation into the bacterial biochemical network via the exogenous xylose isomerase pathway remained unresolved. Here, we elucidate the xylose metabolism and establish a foundation for further engineering followed by ALE. First, native glycolysis is derepressed by deleting the local transcriptional regulator gene hexR. We then enhance the pentose phosphate pathway by implanting exogenous transketolase and transaldolase into two lag-shortened strains and allow ALE to finetune the rewired metabolism. Subsequent multilevel analysis and reverse engineering provide detailed insights into the parallel paths of bacterial adaptation to the non-native carbon source, highlighting the enhanced expression of transaldolase and xylose isomerase along with derepressed glycolysis as key events during the process.


Assuntos
Pseudomonas putida , Xilose , Xilose/metabolismo , Pseudomonas putida/genética , Transaldolase/genética , Engenharia Metabólica , Via de Pentose Fosfato
11.
Methods Mol Biol ; 2760: 209-217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468091

RESUMO

Emerging microorganism Pseudomonas putida KT2440 is utilized for the synthesis of biobased chemicals from renewable feedstocks and for bioremediation. However, the methods for analyzing, engineering, and regulating the biosynthetic enzymes and protein complexes in this organism remain underdeveloped.Such attempts can be advanced by the genetic code expansion-enabled incorporation of noncanonical amino acids (ncAAs) into proteins, which also enables further controls over the strain's biological processes. Here, we give a step-by-step account of the incorporation of two ncAAs into any protein of interest (POI) in response to a UAG stop codon by two commonly used orthogonal archaeal tRNA synthetase and tRNA pairs. Using superfolder green fluorescent protein (sfGFP) as an example, this method lays down a solid foundation for future work to study and enhance the biological functions of KT2440.


Assuntos
Aminoacil-tRNA Sintetases , Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Código Genético , Aminoácidos/genética , Aminoácidos/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Aminoacil-tRNA Sintetases/metabolismo
12.
PLoS One ; 19(3): e0299128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38437212

RESUMO

Fermentation-based biosynthesis in synthetic biology relies heavily on sugar-derived feedstocks, a limited and carbon-intensive commodity. Unconventional feedstocks from less-noble sources such as waste are being utilized to produce high-value chemical products. Azo dyes, a major pollutant commonly discharged by food, textile, and pharmaceutical industries, present significant health and environmental risks. We explore the potential of engineering Pseudomonas putida KT2440 to utilize azo dyes as a substrate to produce a polyketide, actinorhodin (ACT). Using the constrained minimal cut sets (cMCS) approach, we identified metabolic interventions that optimize ACT biosynthesis and compare the growth-coupling solutions attainable on an azo dye compared to glucose. Our results predicted that azo dyes could perform better as a feedstock for ACT biosynthesis than glucose as it allowed growth-coupling regimes that are unfeasible with glucose and generated an 18.28% higher maximum ACT flux. By examining the flux distributions enabled in different carbon sources, we observed that carbon fluxes from aromatic compounds like azo dyes have a unique capability to leverage gluconeogenesis to support both growth and production of secondary metabolites that produce excess NADH. Carbon sources are commonly chosen based on the host organism, availability, cost, and environmental implications. We demonstrated that careful selection of carbon sources is also crucial to ensure that the resulting flux distribution is suitable for further metabolic engineering of microbial cell factories.


Assuntos
Compostos Azo , 60433 , Pseudomonas putida , Carbono , Glucose , Antraquinonas
13.
BMC Genomics ; 25(1): 267, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468234

RESUMO

In every omics experiment, genes or their products are identified for which even state of the art tools are unable to assign a function. In the biotechnology chassis organism Pseudomonas putida, these proteins of unknown function make up 14% of the proteome. This missing information can bias analyses since these proteins can carry out functions which impact the engineering of organisms. As a consequence of predicting protein function across all organisms, function prediction tools generally fail to use all of the types of data available for any specific organism, including protein and transcript expression information. Additionally, the release of Alphafold predictions for all Uniprot proteins provides a novel opportunity for leveraging structural information. We constructed a bespoke machine learning model to predict the function of recalcitrant proteins of unknown function in Pseudomonas putida based on these sources of data, which annotated 1079 terms to 213 proteins. Among the predicted functions supplied by the model, we found evidence for a significant overrepresentation of nitrogen metabolism and macromolecule processing proteins. These findings were corroborated by manual analyses of selected proteins which identified, among others, a functionally unannotated operon that likely encodes a branch of the shikimate pathway.


Assuntos
Pseudomonas putida , Pseudomonas putida/genética , Proteoma/metabolismo , Multiômica , Biotecnologia , Óperon
14.
J Agric Food Chem ; 72(8): 4217-4224, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38356383

RESUMO

Vanillic acid (VA), as a plant-derived phenolic acid compound, has widespread applications and good market prospects. However, the traditional production process cannot meet market demand. In this study, Pseudomonas putida KT2440 was used for de novo biosynthesis of VA. Multiple metabolic engineering strategies were applied to construct these P. putida-based cell factories, including the introduction of a Hs-OMTopt, engineering the cofactor S-adenosylmethionine supply pathway through the overexpression of metX and metH, reforming solubility of Hs-OMTopt, increasing a second copy of Hs-OMTopt, and the optimization of the fermentation medium. The resulting strain, XCS17, de novo biosynthesized 5.4 g/L VA from glucose in a fed-batch fermentation system; this is the highest VA production titer reported up to recently. This study showed that P. putida KT2440 is a robust platform for achieving the effective production of phenolic acids.


Assuntos
Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Ácido Vanílico/metabolismo , Engenharia Metabólica , Hidroxibenzoatos/metabolismo
15.
Plant Sci ; 342: 112028, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38360401

RESUMO

Iron (Fe) and phosphate (Pi) are two essential nutrients that are poorly available in the soil and should be supplemented either as fertilizers or organic amendments to sustain crop production. Currently, determining how rhizosphere bacteria contribute to plant mineral nutrient acquisition is an area of growing interest regarding its potential application in agriculture. The aim of this study was to investigate the influence of root colonization by Pseudomonas putida for Arabidopsis growth through Fe and Pi nutritional signaling. We found that root colonization by the bacterium inhibits primary root elongation and promotes the formation of lateral roots. These effects could be related to higher expression of two Pi starvation-induced genes and AtPT1, the major Pi transporter in root tips. In addition, P. putida influenced the accumulation of Fe in the root and the expression of different elements of the Fe uptake pathway. The loss of function of the protein ligase BRUTUS (BTS), and the bHLH transcription factors POPEYE (PYE) and IAA-LEUCINE RESISTANT3 (ILR3) compromised the root branching stimulation triggered by bacterial inoculation while the leaf chlorosis in the fit1 and irt1-1 mutant plants grown under standard conditions could be bypassed by P. putida inoculation. The WT and both mutant lines showed similar Fe accumulation in roots. P. putida repressed the expression of the IRON-REGULATED TRANSPORTER 1 (IRT1) gene suggesting that the bacterium promotes an alternative Fe uptake mechanism. These results open the door for the use of P. putida to enhance nutrient uptake and optimize fertilizer usage by plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Pseudomonas putida , Arabidopsis/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Fosfatos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
16.
Sci Total Environ ; 922: 171062, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38401717

RESUMO

The following research provides novel and relevant insights into potential environmental consequences of combination of various organic cations with commercial systemic herbicide (dicamba), in accordance with a 'herbicidal ionic liquids' (HILs) strategy. Toxicity assays of five dicamba-based HILs comprising different hydrophobic and hydrophilic cations, namely choline [CHOL][DIC], ethyl betainate [BETC2][DIC], decyl betainate [BETC10][DIC], hexadecyl betainate [BETC16][DIC] and didecyldimethylammonium [DDA][DIC]), have been tested towards bacteria (Pseudomonas putida, Escherichia coli, Bacillus subtilis), algae (Chlorella vulgaris), fresh and marine water crustaceans (Daphnia magna, Artemia franciscana). The structure of respective substituents in the cation emerged as a decisive determinant of toxicity in the case of tested species. In consequence, small ions of natural origin ([CHOL] and [BETC2]) demonstrated toxicity numerous orders of magnitude lower compared to fully synthetic [DDA]. These results emphasize the role of cations' hydrophobicity, as well as origin, in the observed acute toxic effect. Time-dependent toxicity assays also indicated that betaine-type cations comprising an ester bond can rapidly transform into less harmful substances, which can generally result in a reduction in toxicity by even several orders of magnitude. Nonetheless, these findings challenge the concept of ionic liquids with herbicidal activity and give apparent parallels to adjuvant-dependent toxicity issues recently noted in typical herbicidal formulations.


Assuntos
Chlorella vulgaris , Herbicidas , Líquidos Iônicos , Pseudomonas putida , Herbicidas/toxicidade , Herbicidas/química , Dicamba/química , Líquidos Iônicos/toxicidade , Líquidos Iônicos/química , Cátions/química
17.
Metab Eng ; 82: 157-170, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38369052

RESUMO

Sustainable aviation fuel (SAF) will significantly impact global warming in the aviation sector, and important SAF targets are emerging. Isoprenol is a precursor for a promising SAF compound DMCO (1,4-dimethylcyclooctane) and has been produced in several engineered microorganisms. Recently, Pseudomonas putida has gained interest as a future host for isoprenol bioproduction as it can utilize carbon sources from inexpensive plant biomass. Here, we engineer metabolically versatile host P. putida for isoprenol production. We employ two computational modeling approaches (Bilevel optimization and Constrained Minimal Cut Sets) to predict gene knockout targets and optimize the "IPP-bypass" pathway in P. putida to maximize isoprenol production. Altogether, the highest isoprenol production titer from P. putida was achieved at 3.5 g/L under fed-batch conditions. This combination of computational modeling and strain engineering on P. putida for an advanced biofuels production has vital significance in enabling a bioproduction process that can use renewable carbon streams.


Assuntos
Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Carbono/metabolismo , Engenharia Metabólica
18.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365256

RESUMO

The synthetic buffer compound TRIS (2-amino-2-(hydroxymethyl)propane-1,3-diol) is used in countless applications, and no detailed information on its degradation has been published so far. Herein, we describe the discovery of a complete bacterial degradation pathway for TRIS. By serendipity, a Pseudomonas strain was isolated from sewage sludge that was able to grow with TRIS as only carbon and nitrogen source. Genome and transcriptome analyses revealed two adjacent gene clusters embedded in a mobile genetic element on a conjugative plasmid to be involved in TRIS degradation. Heterologous gene expression revealed cluster I to encode a TRIS uptake protein, a TRIS alcohol dehydrogenase, and a TRIS aldehyde dehydrogenase, catalyzing the oxidation of TRIS into 2-hydroxymethylserine. Gene cluster II encodes a methylserine hydroxymethyltransferase (mSHMT) and a d-serine dehydratase that plausibly catalyze the conversion of 2-hydroxymethylserine into pyruvate. Conjugational plasmid transfer into Pseudomonas putida KT2440 enabled this strain to grow with TRIS and with 2-hydromethylserine, demonstrating that the complete TRIS degradation pathway can be transmitted by horizontal gene transfer. Subsequent enrichments from wastewater purification systems led to the isolation of further TRIS-degrading bacteria from the Pseudomonas and Shinella genera carrying highly similar TRIS degradation gene clusters. Our data indicate that TRIS degradation evolved recently via gene recruitment and enzyme adaptation from multiple independent metabolic pathways, and database searches suggest that the TRIS degradation pathway is now globally distributed. Overall, our study illustrates how engineered environments can enhance the emergence of new microbial metabolic pathways in short evolutionary time scales.


Assuntos
Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Família Multigênica , Oxirredução , Redes e Vias Metabólicas/genética
19.
Nat Commun ; 15(1): 1817, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418817

RESUMO

Plants and microbes communicate to collaborate to stop pests, scavenge nutrients, and react to environmental change. Microbiota consisting of thousands of species interact with each other and plants using a large chemical language that is interpreted by complex regulatory networks. In this work, we develop modular interkingdom communication channels, enabling bacteria to convey environmental stimuli to plants. We introduce a "sender device" in Pseudomonas putida and Klebsiella pneumoniae, that produces the small molecule p-coumaroyl-homoserine lactone (pC-HSL) when the output of a sensor or circuit turns on. This molecule triggers a "receiver device" in the plant to activate gene expression. We validate this system in Arabidopsis thaliana and Solanum tuberosum (potato) grown hydroponically and in soil, demonstrating its modularity by swapping bacteria that process different stimuli, including IPTG, aTc and arsenic. Programmable communication channels between bacteria and plants will enable microbial sentinels to transmit information to crops and provide the building blocks for designing artificial consortia.


Assuntos
Arabidopsis , Microbiota , Pseudomonas putida , Solanum tuberosum , Arabidopsis/genética , Produtos Agrícolas
20.
Microb Cell Fact ; 23(1): 69, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419048

RESUMO

We are interested in converting second generation feedstocks into styrene, a valuable chemical compound, using the solvent-tolerant Pseudomonas putida DOT-T1E as a chassis. Styrene biosynthesis takes place from L-phenylalanine in two steps: firstly, L-phenylalanine is converted into trans-cinnamic acid (tCA) by PAL enzymes and secondly, a decarboxylase yields styrene. This study focuses on designing and synthesizing a functional trans-cinnamic acid decarboxylase in Pseudomonas putida. To achieve this, we utilized the "wholesale" method, involving deriving two consensus sequences from multi-alignments of homologous yeast ferulate decarboxylase FDC1 sequences with > 60% and > 50% identity, respectively. These consensus sequences were used to design Pseudomonas codon-optimized genes named psc1 and psd1 and assays were conducted to test the activity in P. putida. Our results show that the PSC1 enzyme effectively decarboxylates tCA into styrene, whilst the PSD1 enzyme does not. The optimal conditions for the PSC1 enzyme, including pH and temperature were determined. The L-phenylalanine DOT-T1E derivative Pseudomonas putida CM12-5 that overproduces L-phenylalanine was used as the host for expression of pal/psc1 genes to efficiently convert L-phenylalanine into tCA, and the aromatic carboxylic acid into styrene. The highest styrene production was achieved when the pal and psc1 genes were co-expressed as an operon in P. putida CM12-5. This construction yielded styrene production exceeding 220 mg L-1. This study serves as a successful demonstration of our strategy to tailor functional enzymes for novel host organisms, thereby broadening their metabolic capabilities. This breakthrough opens the doors to the synthesis of aromatic hydrocarbons using Pseudomonas putida as a versatile biofactory.


Assuntos
Carboxiliases , Cinamatos , Pseudomonas putida , Estireno/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Pseudomonas putida/metabolismo , Fenilalanina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...